

Interim Progress Report

Hand Gesture Recognition System

Author: Dhruv Agrawal

UID: 3035344405

Supervisor: Dr. K.K.Y. Wong

Second Examiner: Dr. A.T.C. Tam

Course: COMP4801 Final Year Project

Date: 01 February 2020

 i

Abstract
The use of hand gestures is an active area of research in Human Computer Interaction. The

construction of Hand Gesture Recognition Systems and Hand Pose Estimation Systems has

become essential with this interest in new means of HCI. In this study, a pipeline composed of

a hand pose estimator followed by a hand gesture classifier is employed to perform Hand

Gesture Recognition. Current state-of-the-art models suffer are not portable or applicable in

online condition due to complex input and long execution times respectively. This study aims

to show that the joint locations from hand pose estimation can aid the classification process

alleviating the aforementioned problems by inferencing a larger amount of information in a

smaller network. Secondly, an application feasible for online use is also be developed for better

user experience. The hand pose estimator, called HandNet, uses a novel branched architecture

to maximize the amount of contextual information available to the deeper layers of the network.

The classifier will use this joint location in addition to the original data stream in order to make

a classification. Currently, development of HandNet is complete and integration with hand

gesture recognition system is under development.

 ii

Acknowledgements
I would like to take this opportunity to express my gratitude to my final year project supervisor,

Dr. K.K.Y. Wong, without whose support this project would not have been feasible. I would

also take this opportunity to thank Dr. A.T.C Tam for acting as my second examiner and

providing inciteful comments. Furthermore, I thank the department of Computer Science for

accepting this project proposal and for providing the GPU farm servers required for the

development of this project. Finally, I also thank Professor Choi Yuan Han Mable for her

guidance in the writing of this report.

 iii

Contents

Abstract……………………………………………………………………………..…………...i
Acknowledgements……………………………………………………………………………...ii
List of Figures………..………………………………………………………………………...iv
List of Graphs……………….…………………………………………………………………..v
List of Tables…………………………………………..………………………………………..v
List of Acronyms……………………………………………………………………………......vi
1. Introduction…………………………………………..……………………………..……..1

1.1. Background: Brief overview of Hand Pose Estimation Systems……………….……...1
1.2. Background: Brief overview of Hand Gesture Estimation Systems…………….……..1
1.3. Objectives and Approach……………………………………………………………...3
1.4. Outline of the report…………………………………………………………………...3

2. Related Works………..……………………………………………………..…………….4
2.1. Hand Pose Estimation………………………………………………….……………...4
2.2. Hand Gesture Recognition……………………………………………..……………...5
2.3. Summary………………………………………………………………………………5

3. Methodology………...………………………………………………………….…………7
3.1. Introduction…………………………………………………………………..………..7
3.2. Datasets Used………………………………………………………………………….7

3.2.1. NYU Hand Pose dataset………………………………………………………..8
3.2.2. ICVL Hand Pose dataset……………………………………………...………...8
3.2.3. MSRA Hand Pose dataset…………………………………………….……...…8
3.2.4. Multiview Hand Pose Dataset ………………………………………………….8
3.2.5. EgoGesture…………………………………………………………………..…8
3.2.6. NVIDIA Dynamic Hand Gesture Dataset …………………………..…………8
3.2.7. BigHand 2.2M Benchmark Hand Dataset……………………..……………….9

3.3. Model Architecture: Hand Pose Estimation System………………..…………………9
3.4. Performance Measurement Heuristics…………………………..……………………11
3.5. Development Details …………………………………………..…………………….12

3.5.1. Phase 1: Hand Pose Estimation Problem ……………………………………..12
3.5.1.1. Implementation Details.…………………………….………….……..12

3.5.2. Phase 2: Hand Gesture Recognition Problem………….………………...…....13
3.6. Summary……………………………………………………………………………..14

4. Results.…………………………………………………………………………………...15
4.1. Introduction…………………………………………………………………………..15
4.2. Implemented Architecture…………………………………………………………....15
4.3. Challenges and Limitation…………………………………………………………....19

4.3.1. Large Latent Space…………………………………………………………....19
4.3.2. Varying hand models………………………………………………………….19
4.3.3. Self-Occlusion ………………………………………………………………..20
4.3.4. Dataset and Hardware limitations……………………………………………..20

4.4. Project Schedule and Milestones……………………………………………………..20
4.4.1. Tentative Project Schedule: …………………………………………………..20
4.4.2. Milestones and Tentative Completion Dates: ………………………………...21

4.5. Summary……………………………………………………………………………..21
5. Conclusion………………………………………………………………………………..22
References…………………………………………………………………………….............vii

 iv

List of Figures

1.1 Hand gesturing the number 2 2

2.1 Architecture of the Deep-Prior model 4

2.2 Architecture of the model proposed in [3] 5

3.1 Representation of the finger joints 9

3.2 Model architecture 10

4.1 Implemented architecture of HandNet1 16

4.2 Illustration of the hand model predicted 17

4.3 Joint numbers of graph 4.1 18

 v

List of Graphs

4.1 Average Error measured in mm per joint for Hand Net 1 18

List of Tables

4.1 Results of HandNet1 and HandNet2 17

4.2 Execution Times of HandNet1 and HandNet2 19

4.3 Tentative project schedule 20

4.4 Major project milestones. 21

 vi

List of Acronyms (In alphabetical order)

AI Artificial Intelligence

CNN Convolutional Neural Network

DIP Distal Interphalangeal

DNN Deep Neural Network

FCC Fully Connected Component

GPU Graphical Processing Unit

GUI Graphical User Interface

MCP Metacarpophalangeal

PIP Proximal Interphalangeal

RGB-D Red, Green Blue & Depth

RNN Recurrent Neural Network

 1

Chapter 1: Introduction

1.1 Background: Brief overview of Hand Pose Estimation Systems
Hands are our most important tools when it comes to interacting with the world. Even in a quiet

library, two people are able to communicate with little constraint on their communicational facilities

due to an extensive use of hand gestures that garners for the lack of verbal conversation. Hand Gestures

also see applications in presentations and conversing in presence of a large language carrier. Perhaps

the most significant application of effective hand gestures is in Sign Language[19]. With a clear

distinct set of hand gestures, sign language allow conversing with people with auditory impairment.

Thus, we clearly see that humans use hand gestures to convey a large amount of information. This

means that in order to achieve Artificial Intelligence (AI) that is capable of seamlessly interacting with

humans, it is vital that we are able to encode our inherent ability to convey information with the use

of our hands into the AI. A system allowing for such information inference is called a Hand Gesture

Recognition System[2][3].

In order to achieve a marketable Hand Gesture Recognition System, it is essential to first create a

system that allows the computer to detect, and regress the position and orientation of a hand from a

camera input. Such a system is called a Hand Pose Estimation System[2]. This system will be capable

of analyzing a video input and regressing the 3D locations of all the palm and finger joints in the video

stream[3]. It has invited a large amount of interest and a proportionate amount of research has been

conducted into developing such a system.

1.2 Background: Brief overview of Hand Gesture Estimation Systems
The current research community often uses Hand pose estimation and hand gesture recognition

interchangeably. Hand pose estimation is almost always used to refer to regressing the location of hand

joints[2]. However, the term hand gesture is sometimes used as a synonym for hand pose[18] and some

other times used to refer to the class or label assigned to a particular posture[2]. In this study, we refer

to the latter meaning for hand gesture.

 2

Figure 1.1 Hand gesturing the number 2

For example consider the pose in Figure 1.1. In this study, hand pose estimation refers to locating the

hand joints, shown as blue dots in the figure. In contrast, labeling the image as “2” is referred to as

hand gesture recognition.

With this differentiation, one can see that hand gesture recognition is indeed a harder problem when

compared to hand pose estimation. Hand gesture recognition not only involves understanding the

configuration of the hand in the image but also to infer meaning from this configuration. Due to the

variability of hands caused by the different sizes and shapes, a single gesture can appear very different.

Therefore, a hand gesture recognition system has to be invariant of these differences and infer meaning

from a generalized model of a hand. When discussing hand gestures, there are again two types. Firstly,

the gesture can be static (Fig 1.1). Such gestures can be depicted through a single image[6][8][9][10].

The other type of hand gestures are dynamic [4][5][7][12]. This means they involve some form of hand

motion in order to convey the meaning. For example clapping or waving. Due to the motion involved,

a single image is no longer sufficient and we use videos to capture these gestures. Since dynamic

gestures add motional and temporal complexities into the system, classification of such gestures even

is rendered more challenging. Lastly, due to the change in file format, even storage limits become

actual concerns. This leads to finding a balance between the dataset disk size and the quality of the

videos when constructing the videos.

In this study, a system built for hand pose estimation is used to aid the hand gesture recognition by

providing a normalized version of hand pose to the recognition system. It is believed that normalization

of hand pose can reduce the variability of hands. This should in turn improve the performance of the

classifier since it has to learn lesser amount of information about hand poses.

 3

1.3 Objectives, Approach and Deliverables
This project attempts to build a Hand Gesture Recognition System with two key features. First, the

project aims to minimize the amount of input data required by a Hand Gesture Recognition System.

Therefore, the project focuses on using a single RBG-D sensor as the input source. The project posits

that using a strong Hand Pose Estimation model will allow the complete system to recover from a lack

of information available. Secondly, the project aims to find evidence of feasibility of using a hand

gesture recognition system in online conditions. This requires that the total execution time of the

algorithm is sufficiently low to avoid a noticeable lag in any hand gesture based application.

The deliverables of this project will include a Graphic User Interface (GUI) application that allows for

user-friendly interaction with the underlying machine learning models. Furthermore, this project will

also deliver a novel machine learning architecture that can perform hand gesture recognition

effectively.

1.4 Outline of the report
The report is divided into 5 chapters. Chapter 2 discusses related works that have been conducted

related to Hand pose estimation and hand gesture recognition. We discuss Hand Pose Estimation

Models such as DeepPrior++ and Hand Gesture Classifier as presented in [3]. It also features other

implementations of Hand Gesture classification including an application involving finger writing in

mid-air.

Next, Chapter 3 presents the Methodology. It discusses the dataset choices, system architecture and

performance measurement heuristics. It focuses on the branched architecture of HandNet and the

common feature extraction network that allows for faster executions.

Chapter 4 focuses on some of the results gathered by this study. We first discuss the differences

between some of the implementations and then we look average loss, average execution time, average

joint error of our implementations. We also discuss the difference introducing a common feature

extraction layer has on the total execution time. Lastly, it also includes discussion of challenges and

limitations faced by this study and the current status of the project.

The final chapter, Chapter 5 Conclusion, provides a summary to this report highlighting the important

aspects of this project.

 4

Chapter 2: Related Works

2.1 Hand Pose Estimation
Khan et. al. [1] provides a thorough literature review of Hand Pose estimation techniques that do not

employ Deep Learning Algorithms. [1] divides the process of hand gesture estimation into three key

steps: 1) Extraction Method; 2)Feature Extraction; and lastly 3)Classification. Extraction refers to

extracting the hand segment from the image background. This allows the system to isolate the hand

and remove the noise introduced from the background textures. Next, feature extraction refers to

extracting contextual information such as Centre of Gravity, Hand Contours and Silhouettes, and

Fingertips position. Lastly, Classification refers to using the extracted features to make a prediction of

the depicted hand gesture in the image. Different classification systems greatly affect the overall

accuracy of the complete system. Some of the frequently employed non-deep learning models include

Fuzzy C-Means Clustering and Genetic Algorithms [1].

Figure 2.1 Architecture of the Deep-Prior model from [2]. (a) depicts the complete architecture of the primary deep

learning model and (b) shows the structure ORRef Figure taken from [2]

However, with the recent increase in the popularity of the Deep Neural Networks(DNNs), a majority

of the Hand Pose Estimators attempt to use CNNs for performing the aforementioned Extraction,

Feature Extraction and Classification. This decreases the amount of the data preprocessing carried out

by the researchers and also allows for the model to regress its own data processing parameters with

low exterior intervention. In such a scenario, researchers primarily focus on the different architectural

features of the DNNs. One of the most popular such architecture was introduced by Oberweger [2]

called Deep-Prior. This architecture has two salient features. First, they use a pinch layer as a second

(a) (b)

 5

last layer of the network. This can be seen in Figure 2.1 (a) when the model moves from multi-layer

network to FC. They argue that since the latent output space is not purely three dimensional, a pinch

layer allows the network to learn a lower dimensional embedding intrinsically. This then helps increase

the accuracy of their prior network. Next, they train several refining networks, one for each joint, called

ORRef. This is visualized in Figure 2.1 (b). These networks use overlapping crops, centered at the join

location regressed by the first network, of the original input image. This network refines the regressed

joint location and can be applied multiple times in order to achieve a more accurate result.

More recently, Du et al [17] theorized that by decomposing the task into palm pose estimation and

finger pose estimation, we can use cross information to improve the performance of the model

Therefore CrossInfoNet, split the task into the two subtasks and trains a separate subnetwork for each

task. Since the two tasks are mutually distinct, [17] argues that the noise in one of the network will act

as valuable information in the other network. Therefore, after performing a primary feature extraction

they propose the two subnetworks exchanging their noise information and use this noise in further

feature extraction.

2.2 Hand Gesture Recognition

Figure 2.2 Architecture of the model proposed in [3]. Taken from [3]

Köpüklü[3] focuses on creating a model that is suitable for online applications. It uses an online video

stream as input. In order to avoid the problem of running a costly hand gesture recognition system

continuously over the video stream, [3] uses a detector and classifier combination. Refer to Figure 2.2

for the architecture of the model. The detector is a lightweight DNN that is executed continuously over

the video stream in order to detect a hand gesture. If a hand gesture if detected, it then activates the

classifier network that takes in a larger section of the video as the input as makes the prediction of the

 6

hand gesture depicted in the video stream. The detector network is able to achieve 98+% recall rate of

EgoGesture Dataset[3][4][5].

Chang et al. [15] instead attempt to limit the size of the problem by focusing only on the fingertip

instead of the complete hand. They perform frame by frame fingertip detection. By detecting the

fingertip of the index fingertip in each frame, they create a trajectory of the movement of the fingertip.

They then use this trajectory to predict the letter written in air by the use. Markussen, et al [16] build

a word-gesture keyboard that can type by detecting word shaped gestures in midair. They adapt already

existing touch based word-gesture algorithms to work in mid- air. They then projects users’ movement

onto a display and use pinch as a word delimiter. This approach greatly reduces the total number of

unique hand gestures that the model has to learn. Since the method is based on locating only the

fingertip on index finger, this approach differs from more traditional hand gesture classification

approaches.

For implementation of HandNet, we use a modification of DeepPrior++ [2] as a base comparison

model. Similar to the idea in [3], we aim to minimize execution time by reducing the execution time

of the main network by preprocessing the input. [3] achieves this by using a combination of detector

and classifier, in our implementation, we use a combination of hand pose regressor and hand gesture

classifier to reduce the input size to the main network.

2.3 Summary
Current state of Hand Gesture Recognition suffers from limitations on portability and execution times.

A number of papers attempt to alleviate these limitations by reducing the complete problem set. [2]

proposes using a pinch layer for allowing a more natural embedding to be learnt. On the other hand

[3] reduces processing time by breaking the complete network into a light and heavy network.

For our implementations, we use [2] as a basis for comparison and build upon subnetwork approach

of [3].

 7

Chapter 3: Methodology

3.1 Introduction
In this section, we first discuss the details of the datasets used and the architecture of the machine

learning model. Next, we discuss the heuristics used in order to assess the performance of the different

models. Towards the end of this section, we discuss the implementation details and the proposed

project timeline and milestones.

The data available to a machine learning model is the determining factor in the final performance of

the model. Therefore a large amount on research was conducted in deciding which publicly available

datasets were used in the implementations of the architecture. The key factors affecting the choice of

a dataset include dataset size, hand pose variability and image quality of samples. Based on these

factors NYU hand pose dataset [6] and NVIDIA Dynamic Hand Gesture Dataset [7] were selected as

the primary datasets of choice. Besides the aforementioned datasets, the architecture was also

implemented on a number of other datasets. The details of these other datasets is discussed in the

following chapter.

The architecture of the model is the key innovation of this project. This study theorizes that by

transforming the process of hand joint regression into a hierarchical system, a better performance can

be achieved with similar model sizes. This assumption is based on the fact that the position of each

hand joint is not truly free from the position of other hand joints. For example, the position and

orientation of the wrist almost completely decides the position of the finger bases. Finger bases in turn

limit the area in which each finger joint can lie in. Therefore, by using a hierarchical approach the

position of wrist joint can aid the model regress the position of the finger bases.

The models were implemented on the HKU GPU Farm that provides a NVIDIA GeForce GTX 1080

Ti GPU for the training of the models.

3.2 Datasets Used
Since the hand pose estimation problem has been made extremely popular due to the wide availability

of good depth sensors, a large number of hand pose datasets are available. The datasets fall into two

main categories: 1) Static images and 2) Dynamic videos [6][7][12]. The static images depict static

hand gestures such as depicting numbers using fingers. On the other hand, dynamic videos provide

hand gestures that require hand movement such as waving hand. While the static images offer the

advantage of having a smaller file size and easier to generate, they suffer from a low number of real

world applications. Since the biggest focus of the Hand Gesture Recognition is its implementation in

 8

Human Computer interaction, it is essential that the recognition model can handle gestures that involve

movement. This makes the dynamic video models more suitable for Hand gesture recognition.

However, dynamic videos have three primary drawbacks. Firstly, since the data is in form of videos,

the file size of a single sample is much large than that of images. Due to storage limitation, severe

down sampling and compression of the videos is required. This results in poor quality videos which

effect the amount of information that the model can extract from the data. Secondly, shooting videos

of hand gestures requires a large time. In contrast, static hand poses are captured by shooting a video

of a static hand and extracting frames from the video feed. This results in the fact that most of the video

datasets have a smaller number of samples when compared to static images datasets[4][5][8]. Thirdly,

a machine learning model that is large enough to ingest the complete video file needs to have a very

large input layer. This has a ripple effect and the sizes of the other layers are also large. This results in

an enormous number of total parameters to be trained.

We now look at some of the important datasets used in this project:

3.2.1 NYU Hand Pose dataset [6]: This dataset contains 8252 test-set and 72757 training-set frames

of captured RGB-D data with ground-truth hand-pose information. All the images comprise of

various hand poses. For each hand pose, Kinect data from three different angles is captured.

Finally, this dataset is presently popular among Hand Pose researchers due to the high

variability of Hand Poses captured in this dataset.

3.2.2 ICVL Hand Pose dataset [8]: This dataset annotates 16 joint locations with (x,y,z).

Coordinates available for each image. The x and y coordinates are measured in pixels while z

coordinate is measured mm.

3.2.3 MSRA Hand Pose dataset [9]: This dataset contains images from 9 subjects' right hands are

captured using Intel's Creative Interactive Gesture Camera. Each subject has 17 gestures

captured and there are about 500 frames for each gesture.

3.2.4 Multiview Hand Pose Dataset [10]: This dataset captures hand pose from different angles.

This dataset not only provides the 3D hand joint locations for each image but also provides the

bounding boxes for the hands in the images.

3.2.5 EgoGesture[4][5]:This dataset contains 2,081 RGB-D videos, 24,161 gesture samples and

2,953,224 frames from 50 distinct subjects. The authors define 83 classes of static or dynamic

gestures focused on interaction with wearable devices.

 9

3.2.6 NVIDIA Dynamic Hand Gesture Dataset [7] : nvGesture is a dataset of 25 gesture classes,

each intended for human-computer interfaces. The dataset has 1532 weakly segmented videos,

which are performed by 20 subjects at an indoor car simulator. The dataset is then split into

training (70%) and test (30%) sets, resulting in 1050 training and 482 test videos [13].

3.2.7 BigHand 2.2M Benchmark Hand Dataset [12]: BigHand dataset is one of the largest hand

pose datasets available. It contains 2.2M images captured from 10 different subjects using

kinematic 6D electromagnetic sensors[13].

3.3 Model Architecture: Hand Pose Estimation System
As discussed earlier, the performance of any model depends on the inherent architecture of the model.

In this section we propose a novel architecture that uses the underlying hierarchy of the positions of

the hand joints in order to aid the joint position regression process. In order to understand this approach,

it is imperative to first understand the geometry of the hand. [14] describes this geometry very

thoroughly. They compare the difference between a 3D coordinates representation of the hand joints

against a hierarchical model designed by them. In essence, use of 3D coordinates to define the hand

joint locations leads to loss of information regarding the relation between the hand joints. Therefore,

each hand joint has to be located independently. However, such a situation is not entirely true. Since

the joints are connected, there are constraints on the possible locations of one joint given the position

of another joint. For example, consider Proximal Interphalangeal (PIP) joint, as shown in Figure 3.1

below.

Figure 3.1. Representation of the finger joints

Clearly, after fixing the position of that joint, the Distal interphalangeal (DIP) joint can only take the

positions shown by the red arrow in the figure. This means that the position of the DIP joint is bounded

by locations A and B in the image since we fixed the position of the PIP joint. Given this observation,

deduce that knowing the position of the base joints can aid the model to predict the location of the

distal joints.

 10

Figure 3.2. Proposed Model Architecture (a) This is a common feature extraction CNN. (b) These secondary CNN

networks extract features related to their respective joints. (c) This Fully Connected Component makes prediction

of the Wrist joint and the MCP joints. (d) This Fully Connected Component makes prediction of PIP joints and the

DIP joints.(e) This Fully Connected Component makes prediction of the locations of the finger tips.

Based on this assumption, we design our model to predict the hand joints in three steps. In the first

step, only the Wrist joint and the Metacarpophalangeal joints (MCP). In the second step, we predict

the Proximal Interphalangeal joints (PIP) and the Distal Interphalangeal joints (DIP). Finally in the

third step, we predict the locations of the finger tips. The summary of the network architecture is

illustrated in the figure below.

The input is first passed into a common feature extraction layer. This layer is depicted by (a) in Figure

3.2. This layer is responsible for extracting features that are common for the next three steps. The main

function of this layer is to reduce the time complexity and number of trainable parameters in the

network. By making the starting extraction layer common for the three steps, the basic features are

extracted only once. If instead a completely independent network was trained for each step, the total

size of the network will be closer to thrice the present size. This adds a significant time penalty in my

testing. Hence, we instead use a common extraction layer first.

Next, we perform a branching in our network. The rest of the network is divided into three sub

networks with similar architecture. This is illustrated as (b) in the figure. These networks extract the

 11

features that are more relevant to their respective sub-networks. Lastly, we have sections (c), (d) and

(e) of the network. They regress the locations of (i) Wrist joint and the MCP joints, (ii) PIP joints and

the DIP joints and, (iii) the locations of the finger tips respectively.

The earlier discussed idea of using the locations of base joints to predict the locations of distal joints

is applied here. As illustrated in the figure, part (c) first predicts locations of Wrist joint and the MCP

joints and next passes these locations to part (d). Part (d) uses this information in addition to the

information received from its special feature extraction network to in turn predict the locations of PIP

joints and the DIP joints. It then passes the locations of all joints that have been located to the last part

, part (e). Part (e) then performs a function congruent to Part (d) to predict the locations of finger tips.

This results in the regression of all the joints.

3.4 Performance Measurement Heuristics
After discussing the architecture and workflow of the model, we next look at the performance

measurement heuristics used throughout is project.

The project has been divided into 2 separate phases, Hand Pose Estimation System development and

Hand Gesture Recognition System development. The two phases differ in the type of problem they

attempt to solve. Hand pose estimation is a regression type problem. This means that the locations of

each joint can take any value between a smooth interval. On the other hand, hand gesture recognition

is a classification type problem. It attempts to label each gesture with an appropriate name from the

set of classes already provided by the dataset. Due to this major difference, the measurement heuristics

differ for the two phases.

In the first phase, since the problem is of a regressive nature, we use a L2-distance based error

measurement. The L2-distance can be expressed in the following equation:

𝑒𝑟𝑟𝑜𝑟 =
1
𝑛 ×

1
3 × 20 × + (𝑦. − 𝑦0.)2

344	6378496

.:;

																																			(3.1)

In the above equation 𝑦. is a vector containing the actual locations of all the joints for a particular

sample and 𝑦0. is a vector containing the prediction made by our model. By taking the difference of the

two errors, we can get the error made by our network. Next we square the difference in order to make

the loss function invariant of the sign (+/-) of the error. Finally, we calculate the above defined loss

 12

function for each sample in our dataset and sum all the resulting values to get the total error made by

our model. Finally 𝑛 is the total number of samples in the training dataset and 3 × 20 reduces the error

from per pose to per joint since there are 20 joint locations being regressed and we measure x, y and z

coordinates for each. Using such an error function enforces the training method to try to minimize the

distance between the actual position and the predicted position by our model.

For the second phase, we have a classification problem. Therefore we use the accuracy heuristic. The

accuracy heuristic is simply the number of mislabeled samples by our model. We compare the actual

label and predicted label for each sample. If the labels do not match, we add 1 to our total error. In

addition to accuracy, recall and precision heuristics might also be considered in the future. Since the

project is still Phase 1 development, these different heuristics are still yet to be completely explored.

More research will be conducted on the appropriate performance heuristics at the start of the Phase 2.

3.5 Development Details
The project has been primarily spilt into two phases. The first half of the project focuses on Hand Pose

Estimation and the second half of the project focuses on Hand Gesture recognition. Currently, the

project has finished Phase 1 and will now move on to developing Hand Gesture Recognition in Phase

2. The details of the two phases are as follows:

3.5.1 Phase 1: Hand Pose Estimation Problem
For this phase, a lightweight hand pose estimating model was developed. The model was based on the

observation that the movements of the hand joints are primarily hierarchical and this fact can be to

refine the estimations made by the model. The implementation details of these models are as follows:

3.5.1.1 Implementation Details
This is an implementation of the architecture discussed in section 3.3. The implementation slightly

differs from the earlier described network clarity of execution. Here we first discuss the major aspects

of the implementation. The architecture consists of three branches. The first branch is responsible for

regressing the position of the palm joint as well as the MCP joints. The second branch then uses the

positions predicted by the first branch in addition to its own feature extraction layer in order to detect

the PIP and DIP joints. Note that unlike the architecture discussed in section 3.3, this layer also acts as

a refining layer for the joints detected in the first stage. This is achieved by adding the set of joints

predicted by the first layer to set of joints predicted by the second layer. Lastly, the third layer computes

 13

the position of the fingers tips using the output of the second layer in addition to its own feature

extraction layer. Also note that similar to the second layer, the third layer also acts as a refining layer

for the joints predicted by the preceding two layers. Hence, the output of the third layer is the complete

set of joints in the hand.

The key models developed are HandNet6, HandNet7, HandNet9 and HandNet10. HandNet6 combines

the initial feature extraction stage for the three subnetworks. This is comparable to the common feature

extraction layer discussed in the architecture in section 3.3. This design allows to significantly reduce

the number of parameters that need to be trained. This also as an effect of significantly lowering the

execution time of the model. HandNet7 embed a generic hand model into the architecture itself. This

change in design allows to restrict the output latent space from purely 3D to 2.5D. We believe that this

reduction in the output latent space should have a positive effect to the performance of this model.

HandNet9 and HandNet10 used ResNet50 and ResNet18 [20] as common feature extraction networks.

Since ResNet architecture makes it easier for larger networks to learn the identity function [20], this

characteristic allowed HandNet architecture to learn larger amount of information without overfitting

to the data. HandNet9 and HandNet10 differ only in the size of the ResNet networks used with

HandNet9 using a 50 layer deep network while HandNet10 only uses a 18 layer deep network.

Further details of the implementation will be covered in section 4, when we discuss the results

measured using different models created during the iterations.

3.5.2 Phase 2: Hand Gesture Recognition Problem
After completing the hand pose estimation problem satisfactorily, we plan to build upon that model

for hand gesture recognition. We have recently started working on the Hand gesture recognition

system. Our aim is to use the hand pose regressed from HandNet or other hand pose regression systems

to guide the gesture recognition. We believe that since most of the gesture information is captured by

the locations of the hand joints, the pose should serve as a strong indicator of the gesture.

Currently, we are exploring using unsupervised K-means clustering algorithm to cluster similar poses.

In order to make our design robust from translation and rotation, the locations of all the joints were

restructured to follow a hierarchical model similar to [14]. It is also to be mentioned that such an

approach is best suited for static poses. Next, we also plan to use a RNN based model that will use

 14

HandNet model from phase 1 as a data preprocessor. Using an RNN should allow us to provide a video

feed to the network hence allowing for better performance on dynamic gestures.

Since the second phase has been started only in early January, further details will be incorporated in

the future.

3.6 Summary
In designing the models for this project, we made a key observation based on the underlying hierarchy

of hand joint locations. Using this observation, we model our architecture to predict the joints in a

branched system. Each branch of the architecture is responsible of a separate subset of the hand joints.

Finally, each branch shares information with the following branch in order to aid the prediction of the

rest of the hand joints.

This section covered the theoretical observations and models proposed by this project. The next section

will look at the actual implementation and results obtained by this project.

 15

Chapter 4: Results

4.1 Introduction
In this chapter we discuss some of the interesting results observed from the currently implemented

models. We shortly discuss the choices for the internal architecture of the different subnetworks

discussed in section 3.5.1.1. We then discuss the differences in architecture over the different iterations

of the model. Lastly, we compare the results outputted by the models.

4.2 Implemented Architecture
In section 3.5.1.1, we briefly discussed the difference between the implemented models and the

proposed model by this study. In this section, we detail the changes implemented to the models over a

number of iterations. In section 3.5.1.1, we also discussed a key property of our network, that being

the proposed architecture is independent of the actual details of each subnetwork. Therefore, during

our implementations, it is required to select a design for the architecture of each subnetwork. In this

study we used the model in [2] called Deep-prior as a base model. We split that model and use the

segmented subnetworks in place of different subnetworks in our proposed model. We refer to the

resulting model as HandNet. By doing so, we believe that we can measure the difference in

performance and time penalty between Deep-prior and HandNet.

In this section we discuss an interesting observation made when comparing results from two different

iterations of HandNet. We refer to these two iterations as HandNet1 and HandNet2 respectively. The

summary of the implementation details of HandNet1 can be found in the Figure 4.1.

Notice that the architecture in Figure 4.1 is very similar to the architecture of the originally proposed

model. The difference lies in the first feature extraction layer for each branch. HandNet1 features an

independent primary feature extraction layer. The rationale behind this variation was to confirm the

earlier discussed assumption that the basic features should be similar across the three branches of the

network. By comparing the performance of HandNet1 and HandNet2, we can conclusively decide the

effect of the primary feature extraction. In order to conduct this experiment, the implementation of

HandNet2 was kept completely identical to the original model.

 16

Figure 4.1. Implemented architecture of HandNet1. Architecture of HandNet1 omits the common feature

extraction layer discussed in the original layer and hence has approximately thrice the number of trainable

parameters

In the above figure, we also see that the common feature extraction layers use 8x5x5 filters for the

CNN layers. It performs three such convolutions. Next, the specialized feature CNN uses a 8x3x3 filter

and performs convolution only once. For both common features and specialized features, maximum

pooling with stride 2 is performed after every convolution. The sizes of the FCC layers are as seen in

the figure. Note that the last FCC layer outputs the complete joint coordinates vector of length 60.

The two models were trained on NYU Hand pose dataset discussed in section 3.2. The images in the

NYU Hand Pose Dataset have 36 annotated joints. However, for this implementation, we only regress

the locations of 20 of the joints. See figure 4.2 below for illustration of the hand model that we regress.

Figure 4.2 (a), shows the actual image captured and figure 4.2 (b) shows the 36 joint locations that are

annotated in the dataset. In this study we only regress the locations of the joints marked in red in figure

4.2 (b). For each of the four fingers, we predict the MCP, DIP, PIP and finger tips. However, for the

thumb only MCP, DIP and thumb tip are predicted. In addition of to these joints, a central palm joint

is predicted as well. This joint acts as the base location of the hand.

 17

Figure 4.2 Illustration of the hand model predicted. (a) depicts the actual image captured and (b) graphs the 36 hand

joints annotated in NYU dataset. (a) is taken from NYU dataset(train/rgb_1_0000001.png)

The training was conducted on the training sub dataset using Adam optimizer and the min squared

error loss (L2 loss) discussed earlier. The generalized performance was measured on the test sub

dataset of NYU dataset. We notice that the average loss for HandNet1 is 120.7 with standard deviation

of 9.12 while for HandNet2 it is 127.23 with standard deviation of 10.99. For the calculation of the

error, x, y and z coordinates are measured in millimeters in the real world. The difference between the

two models is 5.8%. This difference is within the margin of variation associated with being due to the

randomness with which the input is presented to the models during training. The complete statistics of

the comparison of the results of the two models is presented in Table 4.1 below.

Table 4.1. Results of HandNet1 and HandNet2.

The average pose error for Deep-Prior-ORRef and Tompson et. al. are presented as listed in [2].

Since the difference in error is within the expected margins, we can conclude that using a common

feature layer indeed has little effect on the overall performance of the model. This also confirms that

the primary feature extraction layers in HandNet1 must be extracting similar features from the input.

Based on these results, we can conclusively argue that given the decrease in the total number of

trainable parameters and the low execution times, using a common feature extraction layer should be

 Average Standard
Deviation

Minimum
Error

Maximum
error

HandNet1 120.7 9.1214 89.1276 147.2234
HandNet2 127.23 10.9903 95.4217 164.3338
Deep-Prior-ORRef 19.5 N/A N/A N/A
Tompson et. al. 21 N/A N/A N/A

(a) (b)

 18

preferred over independent feature extractors for the three branches. This finding helps this study focus

on the second objective of building a lightweight deep learning model capable of similar performance

as more complex models.
Graph 4.1. Average Error measured in mm per joint for Hand Net 1

Figure 4.3 Joint numbers of graph 1.

Lastly, we looking at graph 1, we clearly see that the model struggles is regressing the z-coordinate

for all the joints when compared to the y-coordinates. On average, error in z-coordinate is 1.25 times

the error in y-coordinate. This is also theoretically justifiable since depth is not measured as a

completely independent dimension. Due to occlusion in hand joint locations, the depth information for

a number of joints is not captured by the samples.

This study reaches the conclusion that by applying such refinements to a model architecture, it might

be possible to build a model achieving the abovementioned objective. This is clear from analyzing the

execution times of HandNet1 and HandNet2 as seen in Table 2 below. By using a common feature

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Average error for each joint

x-coordinates y-coordinates z-coordinates

 19

layer, HandNet2 decreases execution time by 0.2 seconds which is 13.79% of the original 1.45 seconds

of HandNet1.

Table 4.2. Execution Times of HandNet1 and HandNet2

 Average Execution Time
(CPU) as measured on jupyter

lab
HandNet1 1.45 seconds

HandNet2 1.25 seconds

4.3 Challenges and Limitations
We next look at some of the challenges faced with Hand Pose Estimation.

4.3.1 Large Latent Space
Firstly, note that the fingers are the most “free” parts of the human body. Due to the three finger joints,

MCP joint, PIP joint and DIP, the fingers are capable of fine movements and have a large volume that

each finger can potentially occupy. Since large degree of freedom for the fingers results in a large

latent output space for a model, this severely limits the possible accuracy of a hand pose estimators

[14]. As mentioned earlier, by transforming the data from 3D to 2.5D, we try to minimize the latent

output space.

4.3.2 Varying hand models
Another challenge arise from the varying finger and palm sizes. The sizes of fingers vary from human

to human. Besides the sizes of particular fingers, the ratio of the lengths of different fingers also varies

amongst individuals. Easiest example of this being that many people have their index and ring fingers

of almost same length while others have one clearly larger than the other. This results in a large number

of possible human hand models [14]. This is less desirable while programming a generic hand model

into a system. The system has to account for different variations of human hand and the different latent

spaces that arises from these differences. To mitigate this difficulty, we calculate the mean bone length

for every bone in a human hand across our dataset. We then use this mean bone length as a generic

hand model.

 20

4.3.3 Self Occlusion
Lastly, one of the most challenging problems faced during Hand Pose Estimation is due to self-

occlusion[2]. Due to the large number of joints in such a small region, it is easy for fingers to block

each other from the view of the camera. This can result in the system having to estimate position of a

finger that is completely occluded from the view of the camera. We believe that using depth

information provided by the depth sensors should help reduce the amount of ambiguity in the data.

4.3.4 Dataset and Hardware limitations
During the development of this project faces two major limitations. Firstly, the image and video

resolution is very low for a significant number of datasets available. This results in a large loss of

information. This in turn effects the performance of any model. Secondly, due to the limited hardware

available, each iteration of the models requires a significant amount of time to complete training. This

acutely limits the number of the models that can be trained and tested. The study mitigates the effect

of these limitations by using validation techniques while training and keeping the models as

lightweight as feasible. By using validation techniques, one is able to monitor the performance of the

model while it is training. This allows one to decide when the model has converged and approximate

its real world performance while it is still training.

4.4 Project Schedule and Milestones

4.4.1 Tentative Project Schedule:
This table summarizes the different periods in the project and the main objectives of each period. Each

period is in between 4 and 6 weeks in length.

Table 4.3: Tentative project schedule

Period Period Task Status

1 Sep 2019 – 30 Oct 2019 Complete HandNet 6-7 Complete

31 Oct 2019 – 01 Dec 2019 Complete HandNet 8-10 Complete

24 Dec 2019 – 15 Jan 2020 Work on the first and second prototype of the Hand
gesture recognition system.

In progress

16 Jan 2020 – 14 Feb 2020 Work on the final implementation of the Hand gesture
recognition system.

Incomplete

15 Feb 2020 – 31 Mar 2020 Testing and Debugging Incomplete

1 Apr 2020 – 18 Apr 2020 Real world testing and debugging Incomplete

 21

4.4.2 Milestones and Tentative Completion Dates:

Listed below are the major milestones for this project.

Table 4.4: Major project milestones.

Date Milestone

29 Sep 2019 Submission of Inception Deliverables.

30 Oct 2019 Phase 1 complete. A working hand pose estimator ready.

30 Nov 2019 First hand gesture recognition prototype ready.

15 Jan 2020 Second hand gesture recognition prototype ready.

2 Feb 2020 Submission of Elaboration Deliverables.

14 Feb 2020 Third hand gesture recognition model ready.

19 Apr 2020 Submission of Final Deliverables.

4.5 Summary
Through this project, we expect that we can successfully build an architecture that has been previously

under researched. By assessing the performance of my models, I should be able to show that the earlier

discussed observation can indeed provide valuable information that can be coded into the model. The

project has been split into two phases. Currently, the project close to completing the first development

phase. We will next directly work on a hand gesture classifier. We will first focus on researching the

current state of the art performers in this sphere and search of common features of these models. Next,

we will design and implement our own models.

 22

Chapter 5: Conclusion

Hand Gesture recognition is an exciting field for research in the computer vision. A successful hand

gesture recognition system will enable a number of currently unexplored applications. Chief amongst

these applications is Human-Computer Interaction. Allowing computers to infer meaning from hand

and finger movements will open a new form of interaction with the computer that may also increase

its accessibility to a larger number of users. Current implementations of this system suffer from two

central limitations. Firstly, they require an array of sensors to make a reliable regression and secondly,

they have large execution time delays. These limitations make the implementations unportable and

unsuitable for real time applications respectively. It is to be noted that research is being conducted in

order to mitigate these effects [16][6].

This project directly tackles both these limitations. The key objective of this project is to use a single

RGB-D image to regress the locations of the hand joints. Secondly, the project also hopes to investigate

the feasibility of using a lightweight model to make the system suitable for real time applications.

Hence, the project looks to find an ideal balance between the performance and the speed of the system.

This study posits that this insight can be that the positions of hand joints is not truly independent.

Therefore, by using the locations of base hand joints, we can regress the position of the distal hand

joints. Building on this insight, we designed and implemented a novel architecture. The salient feature

of the architecture is the branching system that occurs after the common feature extraction stage. These

branches independently regress the positions of their assigned hand joints supplementing their data

processing with the output from other branches. Another fact to note is that the general architecture is

not dependent on any particular subnetwork. Any existing popular deep learning networks can be

plugged in at the different parts of the main architecture.

In conclusion, it is hoped that through this project will be able to deliver a Hand Gesture Classifier that

can reflect the usefulness of performing Hand pose estimation in a hierarchical manner and the

feasibility of using a single input feed to perform classification of hand gestures.

 vii

References

1. R. Z. Khan, and N. A Ibraheem. Hand gesture recognition: a literature review. International

journal of artificial Intelligence & Applications, 3(4), 161,2012.

2. M. Oberweger, P. Wohlhart, and V. Lepetit,. Hands deep in deep learning for hand pose

estimation. arXiv preprint arXiv:1502.06807,2015.

3. O. Köpüklü, A. Gunduz, N. Kose, and G. Rigoll. Real-time hand gesture detection and

classification using convolutional neural networks. arXiv preprint arXiv:1901.10323,2019.

4. Y. Zhang, C. Cao, J. Cheng, and H. Lu. Egogesture: a new dataset and benchmark for

egocentric hand gesture recognition. IEEE Transactions on Multimedia, 20(5), 1038-

1050,2018.

5. C. Cao, Y. Zhang, Y. Wu, H. Lu, and J. Cheng. Egocentric gesture recognition using

recurrent 3d convolutional neural networks with spatiotemporal transformer modules. In

Proceedings of the IEEE International Conference on Computer Vision (pp. 3763-

3771),2017.

6. J. Tompson, M. Stein, Y. Lecun, and K. Perlin. Real-time continuous pose recovery of human

hands using convolutional networks. ACM Transactions on Graphics (ToG), 33(5), 169,2014.

7. P. M. X. Y. S. Gupta, and K. K. S. T. J Kautz. Online detection and classification of dynamic

hand gestures with recurrent 3d convolutional neural networks. CVPR, 2016.

8. D. Tang, H. Jin Chang, A. Tejani, and T. K. Kim. Latent regression forest: Structured

estimation of 3d articulated hand posture. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 3786-3793), 2014.

9. X. Sun, Y. Wei, S. Liang, X. Tang, and J. Sun. Cascaded hand pose regression. In

Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 824-

832), 2015.

10. F. Gomez-Donoso, S. Orts-Escolano, and M. Cazorla. Large-scale multiview 3D hand pose

dataset. Image and Vision Computing, 81, 25-33, 2019.

11. O. Köpüklü, A. Gunduz, N. Kose, and G. Rigoll. Motion fused frames: Data level fusion

strategy for hand gesture recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops (pp. 2103-2111), 2018.

12. S. Yuan, Q. Ye, B. Stenger, S. Jain, and T. K. Kim. Bighand2. 2m benchmark: Hand pose

dataset and state of the art analysis. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (pp. 4866-4874), 2017.

 viii

13. B. Doosti. Hand Pose Estimation: A Survey. arXiv preprint arXiv:1903.01013,2019.

14. C. Xu, and L. Cheng. Efficient hand pose estimation from a single depth image. In

Proceedings of the IEEE international conference on computer vision (pp. 3456-3462), 2013.

15. H. J. Chang, G. Garcia-Hernando, D. Tang, and T. K. Kim. Spatio-Temporal Hough forest

for efficient detection–localisation–recognition of fingerwriting in egocentric camera.

Computer Vision and Image Understanding, 148, 87-96, 2016.

16. A. Markussen, M. R. Jakobsen, and K. Hornbæk. Vulture: a mid-air word-gesture keyboard.

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp.

1073-1082). AC,2014.

17. K. Du, X. Lin, Y. Sun, and X. Ma. CrossInfoNet: Multi-Task Information Sharing Based

Hand Pose Estimation. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (pp. 9896-9905),2019.

18. P. Molchanov, S. Gupta, K. Kim, and J. Kautz. Hand gesture recognition with 3D

convolutional neural networks. In Proceedings of the IEEE conference on computer vision

and pattern recognition workshops (pp. 1-7),2015.

19. L. Pigou, S. Dieleman, P. J. Kindermans, and B. Schrauwen. Sign language recognition using

convolutional neural networks. In European Conference on Computer Vision (pp. 572-578).

Springer, Cham,2014.

20. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv

preprint arXiv:1512.03385,2015.

